Custom Java Library4
4A custom java library
See github for the java source that gets compiled to nn.jar
, where the nn.jar
is nested in library/nn
folder. Here is the sketch that uses the custom nn library:-
# The Nature of Code
# Daniel Shiffman
# http://natureofcode.com
# XOR Multi-Layered Neural Network Example
# Neural network code is all in the 'code' folder
load_library :nn
require_relative './landscape'
include_package 'nn'
ITERATIONS_PER_FRAME = 5
attr_reader :inputs, :nn, :count, :land, :theta, :f, :result, :known
def setup
sketch_title 'XOR'
@theta = 0.0
# Create a landscape object
@land = Landscape.new(20, 300, 300)
@f = create_font('Courier', 12, true)
@nn = Network.new(2, 4)
@count = 0
# Create a list of 4 training inputs
@inputs = []
inputs << [1.0, 0]
inputs << [0, 1.0]
inputs << [1.0, 1.0]
inputs << [0, 0.0]
end
def draw
lights
ITERATIONS_PER_FRAME.times do
inp = inputs.sample
# Compute XOR
@known = ((inp[0] > 0.0 && inp[1] > 0.0) || (inp[0] < 1.0 && inp[1] < 1.0)) ? 0 : 1.0
# Train that sucker!
@result = nn.train(inp, known)
@count += 1
end
# Ok, visualize the solution space
background(175)
push_matrix
translate(width / 2, height / 2 + 20, -160)
rotate_x(Math::PI / 3)
rotate_z(theta)
# Put a little BOX on screen
push_matrix
stroke(50)
no_fill
translate(-10, -10, 0)
box(280)
land.calculate(nn)
land.render
# Draw the landscape
pop_matrix
@theta += 0.0025
pop_matrix
# Display overal neural net stats
network_status
end
def network_status
mse = 0.0
text_font(f)
fill(0)
text('Your friendly neighborhood neural network solving XOR.', 10, 20)
text(format('Total iterations: %d', count), 10, 40)
mse += (result - known) * (result - known)
rmse = Math.sqrt(mse / 4.0)
out = format('Root mean squared error: %.5f', rmse)
hint DISABLE_DEPTH_SORT
text(out, 10, 60)
hint ENABLE_DEPTH_SORT
end
def settings
size(400, 400, P3D)
end
# The Nature of Code
# Daniel Shiffman
# http:#natureofcode.com
# "Landscape" example
class Landscape
include Processing::Proxy
attr_reader :scl, :w, :h, :rows, :cols, :z, :zoff
def initialize(scl, w, h)
@scl, @w, @h = scl, w, h
@cols = w / scl
@rows = h / scl
@z = Array.new(cols, Array.new(rows, 0.0))
@zoff = 0
end
# Calculate height values (based off a neural network)
def calculate(nn)
val = lambda do |curr, net, x, y|
curr * 0.95 + 0.05 * (net.feed_forward([x, y]) * 280.0 - 140.0)
end
@z = (0...cols).map do |i|
(0...rows).map do |j|
val.call(z[i][j], nn, i * 1.0 / cols, j * 1.0 / cols)
end
end
end
# Render landscape as grid of quads
def render
# Every cell is an individual quad
# (could use quad_strip here, but produces funny results, investigate this)
(0...z.size - 1).each do |x|
(0...z[0].size - 1).each do |y|
# one quad at a time
# each quad's color is determined by the height value at each vertex
# (clean this part up)
no_stroke
push_matrix
begin_shape(QUADS)
translate(x * scl - w * 0.5, y * scl - h * 0.5, 0)
fill(z[x][y] + 127, 220)
vertex(0, 0, z[x][y])
fill(z[x + 1][y] + 127, 220)
vertex(scl, 0, z[x + 1][y])
fill(z[x + 1][y + 1] + 127, 220)
vertex(scl, scl, z[x + 1][y + 1])
fill(z[x][y + 1] + 127, 220)
vertex(0, scl, z[x][y + 1])
end_shape
pop_matrix
end
end
end
end
See also the pbox2d gem.